
Hawkins 8/11/2008 6:24:39 PM Page 1 of 8

BECAUSE SCHOLARLY PUBLISHING OFFICE WHITEPAPER*
Choice of DocEncodingType and encoding level for SPO
publications
Kevin S. Hawkins

Executive Summary
SPO uses DLXS to deliver nearly all of its publications online, with Text Class items

structured according to three different DocEncodingType values and three different encoding
levels. This whitepaper explains SPO’s current and possible use of all nine combinations of
DocEncodingType and encoding level for electronic publications, giving advantages and
disadvantages for each and providing considerations for intake of future publications.

Basic digitization workflows
When reformatting print copies of publications, SPO often takes advantage of the Digital

Conversion Unit (DCU) workflow, in which a bound copy of a document—a book, a journal
issue or a bound volume of a journal1—is scanned, OCRed, and pagetagged.

When publishing born-digital texts from content providers, SPO usually converts to
electronic text directly. However, when page layout is important to the content providers or when
the backfile is large compared to future issues, SPO will receive PDFs and use some or all of the
reformatting workflow for these born-digital texts.

Background
The DLXS middleware used by SPO delivers textual content using its Text Class

functionality. Every Text Class item must be of one of three encoding levels, and one
DocEncodingType must be declared for the entire collection.

The EDITORIALDECL element in the HEADER specifies the level of encoding, with
the N attribute equaling 1, 2, or 4, corresponding to Level 1, Level 2, or Level 4 of TEI Text
Encoding in Libraries: Guidelines for Best Encoding Practices.2 Level 1 and Level 2 always use
the pageviewer (pageturner); Level 4 may do so but need not. (Level 3 of the guidelines strongly
resembles Level 4 but is not supported as such in DLXS.)

The DocEncodingType field in collmgr may have one of three values:
monograph, serialissue, and serialarticle. As of release 13, these values constitute
three de facto subclasses of Text Class. Each collection must declare exactly one of these
DocEncodingType values for the items in that collection.3 Each value assumes a different
structure for the encoded text and delivers this structure in a different way, taking advantage of
various parts of the Text Class code.

* This work is licensed under a Creative Commons Attribution Noncommercial 3.0 United States License. To

request permission to use this content in a way not allowed by the Creative Commons license, contact
copyright@umich.edu. © The Regents of the University of Michigan, 2008.

1 Practice in the Digital Conversion Unit for scanning bound volumes has varied over time. Sometimes issues in the
volume are scanned individually and sometimes the volume is scanned as a unit.

2 http://www.diglib.org/standards/tei.htm
3 If the markup is carefully controlled, it is possible to mix monograph and serialissue texts in one collection

whose DocEncodingType is set to monograph. The middleware will treat serialissue texts as
monographs (e.g., http://hdl.handle.net/2027/spo.aag0609.0002.002).

mailto:copyright@umich.edu

Hawkins 8/11/2008 6:24:39 PM Page 2 of 8

The possible combinations of encoding levels and DocEncodingType values are given
here with examples of each:

Encoding level DocEncodingType

Level 1 Level 2 Level 4
with

pageviewer

Level 4 without
pageviewer

monograph • machyn
1830s
MS

• hiss

• acls (backlist) • machyn
edition

• acls (frontlist)
• spobooks
• globalpublics

serialissue • basp
• mdiaarchive
• mqrarchive

(Abraham
Lincoln
Association
is planning)

(none attested)

serialarticle • jar
• ark
• mjcsl
• fs

(back
issues
only)

(none attested) phimp • passages
• mfr
• jep
• postid
• mdia
• fs (recent issues)

Article-level metadata
Journal metadata is stored in the following locations:

 serialissue serialarticle
issue-level metadata HEADER HEADER
article-level metadata BIBL (in BODY) HEADER

The use of specific elements within HEADER and BIBL for various metadata fields is

determined by the middleware and loosely based on TEI practice but nevertheless various across
collections. While we plan to standardize the practice, possibly leading to a modification of the
DTD to allow for cleaner tagging, it is not clear whether the HEADER or BIBL is ultimately
better suited for article-level metadata.

Monograph collections
Monograph collections allow each item to be presented with a view=toc. This view

shows a list of pages (Level 1 encoding) or the DIV#-HEAD structure (Level 2 or Level 4).

Level 1 monograph
The standard reformatting workflow results in a Level 1 monograph item. The

view=toc shows a list of pages, displayed with numbers, features, or both, according to
pagetagging information. Pages can be viewed using the pageviewer, and by default the OCR
text is accessible from the pageviewer as well.

Hawkins 8/11/2008 6:24:39 PM Page 3 of 8

Level 2 monograph
If we use the standard reformatting workflow yet we have the resources to provide direct

access to sections of the text (such as chapters), we can insert markup by hand that is read by the
view=toc to generate something that resembles a table of contents for the monograph.

Like Level 2 serialissue collections, DIV1-BIBLs are inserted in the OCRed text.
However, HEAD tags are also inserted, containing the text to be displayed in the view=toc,
and the BIBL tag contains only a BIBLSCOPE for that section’s starting page number. This
BIBLSCOPE lacks other BIBL tags that are used in Level 2 serialissue collections to allow
for direct access to articles by author and title fabregions.

Level 4 monograph with pageviewer
This results when a monograph is scanned front print but also keyboarded to produce

Level 4 markup, either because OCR doesn’t work well or because the content is especially
valuable. The view=toc displays a full table of contents based on the DIV#-HEAD hierarchy,
and search regions may be set up to take advantage of granular encoding.

This model was also used for the machyn edition, where the pageviewer was used for
the manuscript on which the edition is based.4

Level 4 monograph without pageviewer
When a monograph is received in electronic format (such as an author manuscript in

Word format), or in theory in cases where the original print object is keyboarded but never
scanned, a Level 4 text is produced. The view=toc displays a full table of contents based on
the DIV#-HEAD hierarchy, and search regions may be set up to take advantage of granular
encoding.

Serialissue collections
In a serialissue collection, the middleware looks for DIV1-BIBL structures (“subdivs” or

“article divs”) in the text. When only a c and idno parameters are given, it displays a sort of
table of contents for the digitized item, listing all the DIV1-BIBLs.

Level 1 serialissue
This is impossible since in a serialissue collection, the middleware searches for

DIV1-BIBLs, which are absent in Level 1 texts.

Level 2 serialissue
If we use the standard reformatting workflow yet wish to provide direct access to sections

of the text (such as articles in the journal issue or bound journal volume), we insert DIV1-BIBLs
into the text to mark pages where the text divisions begin. SPO used to do this by hand, but now
makebackfile.sh can do this based on a FileMaker database.5

This resembles a Level 2 monograph but has no HEAD tag as the first child of each
DIV1 and has more BIBLSCOPE tags for various components of the article metadata.

4 See http://hdl.handle.net/2027/spo.5076866.0001.001.
5 Chris Powell uses XSLT to accomplish the same thing.The makebackfile.sh and XSLT methods currently

handle articles that begin in the middle of a page differently, leading to slightly different result sets when using
the two methods.

Hawkins 8/11/2008 6:24:39 PM Page 4 of 8

Level 4 serialissue
No Level 4 serialissue collection is known to have been attempted; however, Chris

Powell reports that the Abraham Lincoln Association is planning to create such texts. These
would presumably look like Level 4 monograph texts, except that the DIV#-HEAD hierarchy
would include articles rather than chapters.

While such a collection would allow for a hierarchical organization of a journal issue’s
contents (with a clear representation of subarticles, if they existed), it seems that the current
DLXS code would have trouble providing access to individual articles without the use of BIBLs.
A Level 4 serialarticle collection would give all the desired benefits of a Level 4
serialissue collection without the complications.

Serialarticle collections
The serialarticle DocEncodingType was developed for SPO to publish born-

digital journal articles outside the reformatting workflow, thereby allowing SPO to move away
from the print convention of the issue as the basic unit of a journal. By making each article its
own Text Class items, SPO was able to provide:

• stable URLs for individual articles
• article-level usage statistics
• bookbag functionality at the item level

Level 1 serialarticle
This model has been used for publications in which features of the print page layout must

be retained in the online version. PDFs of individual articles are provided by the content
provider, and parts of the reformatting workflow are used to give a pageviewer collection of
individual articles. In some cases (specifically jar and phimpz) content providers have
specifically requested that only page images and PDF files be presented to the user—in this case,
the XML is used only for searching.

Since we have so far used this model for publications where electronic source files are
provided, we use the electronic text extracted from the source files, rather than text generated by
OCR, for the collection index in order to give higher search accuracy and better structure. While
some markup (primarily P tags) can be automatically inserted into this extracted text, there is
insufficient markup to create automatically a Level 4 text.6

Were it not for the existing preservation workflow that favors the issue or bound volume
as the basic unit, we could use this model for print backfiles as well, resulting in a publication
like jar except that the page images would be created by reformatting from print. This would
simply require reworking of prep scripts.

Level 2 serialarticle
No such publication is known. It would, in theory, consist of a pageviewer collection of

individual articles, each of which would have DIV1-BIBLs marking individual sections of the
article. When no parameters are given in the URL aside from idno, an outline of the document
would be given, appearing similar to the list of articles in a serialissue item.

6 For jar we strip the P tags out during indexing, but in the future, especially for publications that wish to provide

access to the text view in the pageviewer, we might modify makepub.sh to output more usable extracted text
that can be indexed without additional modification.

Hawkins 8/11/2008 6:24:39 PM Page 5 of 8

The process for creating such a text would be similar to acls backlist tagging, involving
insertion of markup at appropriate places.

Level 4 serialarticle with pageviewer
This model is used for phimp, where the source files allow easy creation of Level 4

markup even though electronic text is not desired by the content provider. SPO will use this
model instead of creating Level 1 text according to the jar conversion method to avoid
discarding structured information.

Level 4 serialarticle without pageviewer
This is the most common model for SPO publications and is used for publications

consisting of individual born-digital articles. They are most often converted from various source
file formats into RTF and then processed using makepub.sh, but sometimes files are instead
turned into Text Class markup by way of another markup language (as in the Simoni
monographs).

SPO has also used this model for backfiles by upgrading markup generated through the
reformatting workflow (as in the mfr backfile), keyboarding (as in the passages backfile), or
upgrading of markup, such as from HTML (as in the jep backfile).

Comparison of features available in the publication models
The following features of SPO publications will work regardless of publication model

chosen:
• Author, title, and subject browse: The current dynamic browse scripts can build

author and title browse lists based on any of the possible models.
• Browsing by issue and article: A static HTML page can be used to list volumes and

issues. Alternatively, the picklist code under development can be used with any
publication model. For serialissue collections, it can be used in conjunction
with the toc view to produce a list of volumes or issues (depending on the size of the
collection); for serialarticle collections, it can be used to produce a list of
volumes or issues (depending on the size of the collection), plus lists of articles in an
issue.

• Other metadata searching: We have taken advantage of the flexibility of the Text
Class header to encode collection-specific information in item headers, such as
keywords or article type (as in jii and gefame); however, it should be possible to
store this information in BIBLs as well.

• Metadata harvesting by OAI: OAIProvider shares article-level metadata for all
publication models.

• Handles: Handles are created for items in serialarticle and monograph
collections as part of the release procedure and at the article level for serialissue
collections.

• Search engine crawling: Full-text indexing by major web crawlers is available for all
public collections. As far as we know, only Google follows links to OCR text in
Level 1 and Level 2.

Hawkins 8/11/2008 6:24:39 PM Page 6 of 8

• Usage statistics: Article-level usage data for both serialissue and
serialarticle collections is handled by the new stats system.7

• Web feeds: Web feeds can be implemented for any Text Class collection.
• High-resolution images: Linking from Text Class items to Image Class items can be

achieved for all publication models.
However, other factors remain in choosing a model.

Size of backfile and frontlist
Economic considerations often trump other factors in deciding on a publication model. If

a publication has a large backfile for which no reliable electronic source files exist, we will
almost certainly use the preservation workflow (used for Level 1 and Level 2 items) for the
backlist because of the prohibitive cost of upgrading the markup through keyboarding.
Exceptions include:

• publications with small backlists, for which investment in upgrading is minimal
(mfr)

• publications whose backfile is printed in newspaper format, with jumps across pages
and multiple columns on a page, for which a pageviewer mechanism would be
difficult to use (passages)

Monograph collections should be done using Level 2 instead of Level 1 when there is
sufficient funding to facilitate this kind of direct access to sections of the text.

It’s also possible to mix encoding levels within a serialarticle collection. For
Feminist Studies, we will likely have the backfile scanned with each article would be scanned
under a different IDNO (Level 1) and will put new issues online as encoded text (Level 4).8

Format of source files from content provider
Frontlist content comes to SPO in various file formats, which could be broadly divided

into those which generally guarantee uniformity of page layout and typography across platforms
(like PDF and LaTeX) and those that do not (like word processor, page layout, and desktop
publishing file formats). If SPO has only the former, it is more straightforward to generate Level
1 or Level 2 content; if it has only the latter, it is more straightforward to generate Level 4
content. While it is possible to take PDF or LaTeX files and generate Level 4 markup, it is nearly
impossible to take formats like Microsoft Word or Adobe InDesign and generate Level 1 or
Level 2 content that will match the pagination and page layout that the content provider intended.

Concern of content providers for page layout
Some content providers feel that maintaining print-like page layout in an electronic

version is of utmost importance (as with jar and phimp) and therefore have no interest in
Level 4 text. An additional benefit to page-image content is that it prints faithfully, unlike with

7 Usage of an individual article is recorded as a section-level hit for serialissue collections and an item-level

hit for serialarticle collections.
8 This is possible in DLXS collections as long as each index file contains at least one text of the deepest level of

markup found in the collection. Doing this for Feminist Studies will give Jeremy an opportunity to rewrite the
code for Level 1 serialarticle collections so that whether or not the pageturner is displayed is determined
not at the collection level but at the item level, based on the encodinglevel of each item.

Hawkins 8/11/2008 6:24:39 PM Page 7 of 8

electronic text. These publications should use Level 1 or Level 2 encoding, optionally disabling
user access to the text view in the pageviewer.

Note that DLXS expects that divisions in Level 2 texts begin only at page breaks,
meaning that there will always be difficulty in accurately encoding articles that begin mid-page
and pages with more than one article on them.

“Textualness” of content
While Level 4 Text Class markup can handle the most common content objects, there are

many textual features that it is incapable of satisfactorily encoding and rendering:
• complicated tables
• textual diagrams
• mathematical and chemical formulae
• meaningful text layout, such as the “rat’s tail” in Alice in Wonderland
These elements are sometimes captured and rendered as inline images in Level 4 items,

but any textual content within these images is not searchable using XPAT.
For consistent rendering of these content objects, an entire collection—even its

frontlist—may be kept in Level 2 markup (as was done with basp) rather than choosing Level
4.

On the other hand, Level 4 collections are much better suited for the following:
• links to high-resolution images
• links to multimedia content
• hyperlinks for footnotes, cross-references, and external sites
• customized searching of regions of text (taking advantage of structured XML)

Item-level access settings
DLXS allows for item-level access controls, meaning that differential access is available

down to the level of an article in a serialarticle collection but only to an issue in a
serialissue collection. Article-level access for serialissue collections would need to
be engineered.

If pay-per-view functionality is ever added to DLXS, this would most likely rely on the
item-level access controls, yielding one more disadvantage to the serialissue model.

Conclusion
For journals it seems preferable to choose the serialarticle model over the

serialissue model since having the article as the basic unit rather than the issue would be
better suited to allowing content to be reused in a way that no longer reflects the issue structure
of the journal.

Recommendations for choice of markup level
The choice of markup level depends on file formats available from the content provider

and on whether the content provider insists on preservation of page layout. The following table
shows which file formats can be converted into which markup level:

Format from content provider Available levels of markup
“plain text” Level 4

Hawkins 8/11/2008 6:24:39 PM Page 8 of 8

word processor formats (Microsoft Word,
RTF, WordPerfect, etc.)

Level 4

page layout or desktop publishing formats
(Adobe InDesign, Adobe PageMaker,
QuarkXPress, Microsoft Publisher, etc.)

Level 4

PDF, PostScript, LaTeX Level 1, Level 2, or possibly Level 4*
paper copies Level 1, Level 2, or Level 4 (using OCR

Proofing or vendor)
*Level 4 text can be created from PDF files, or from OCRd text (as with the mfr backfile), if the flow of text
in the document is simple, but the quality of the output varies greatly depending on how the PDFs were
generated. Extracting from PDF files and processing with makepub.sh can in many cases lead to:

• words broken due to hyphenation
• words running together because a space character was missing from the end of a line
• a new P element beginning at each column break and sometimes even at each line break

All of these can interfere with phrase searching in the data.

The following shows which file formats are required for pageviewer versus encoded text

delivery:

Delivery type File format options
pageviewer • paper

• PDF
• PostScript
• LaTeX

encoded text • “plain text”
• word processor formats
• page layout or desktop publishing formats
• paper (using OCR Proofing or vendor)
• PDF (possibly)
• PostScript (possibly)
• LaTeX (possibly)

Recommendations for DocEncodingType for serial publications
The default DocEncodingType for serial publications should be serialarticle to

allow for maximum manipulation of content at the item, rather than issue, level.
Serialarticle items are easiest to create for frontlist content but can also be created for
reformatted material, especially in cases where one article ends and another begins on the same
page.

In cases where the volume of scanning is too high to identify individual articles,
serialissue should be used.

